and ¹³C NMR (C_6D_6) spectra and capillary GC^{23} retention times.

The procedure recorded here achieves a *practical* total synthesis of $(±)$ -perhydrogephyrotoxin in 13 total steps (six isolated intermediates) and an overall yield of \sim 15% from benzyl **trans-1,3-butadiene-l-carbamate.**

Acknowledgment. The financial support of the National Institutes of Health (Grant No. NS-12389) and the Camille and Henry Dreyfus Foundation (Teacher-Scholar award to L.E.O.) is gratefully acknowledged. NMR and **mass** spectra were determined on instruments purchased with the assistance of NSF departmental instrumentation grants. We are indebted to Dr. John Daly, NIH, for providing a sample of natural gephyrotoxin.

Supplementary Material Available: Spectra **(250-MHz 'H** NMR, 13C **NMR, IR)** for new compounds **8-14** described in this paper **(23** pages). Ordering information is given on **any** current masthead page.

Larry **E.** Overman,* Robert L. Freerks

Department of Chemistry University of California Irvine, California 92717 *Received March 23, 1981*

Mycobactins: Synthesis of (-)-Cobactin **T** from ϵ -Hydroxynorleucine

Summary: The synthesis of $(-)$ -cobactin T is described, the key step being ring closure between C_6 and the hydroxamate N of **a-N-(tert-butoxycarbony1)-t-hydroxy**norleucine 0-benzylhydroxamate.

Sir: Mycobactin T (1) is one of the simplest members of the family of mycobactins discovered and characterized
by Snow.¹⁻³ These compounds are naturally occurring growth factors of *Mycobacteria*. They are exceptionally potent chelators of ferric ion. **This** property, coupled with a high lipophilicity, suggests that the mycobactins are ferric ionophores firmly imbedded in the lipid sheath of *Myco-*

All of the known mycobactins can be saponified to yield two products, mycobactic acid **(2)** and cobactin (3). Each of these contains a hydroxamic acid residue derived from N-hydroxylysine. In mycobactic acid the residue is acyclic whereas in **cobactin** it **is** incorporated in a seven-membered lactam ring (the cobactin ring system). These two residues, and a **2-(2-hydroxyphenyl)oxazoline** residue, comprise the hexadentate ferric chelation system. Lipophilicity is endowed by a long hydrocarbon chain which, depending on the type of mycobactin, may be either on the acyl portion $(1, R¹)$ of the acyclic hydroxamic acid or on the β -hydroxy acid $(1, R²)$ which links the cobactin ring system to the rest of the molecule.

Several of the *Mycobacteria* are dangerous pathogens, and the suggestion that certain synthetic analogues of the mycobactins may specifically inhibit the growth of *Mycobacteria* spurred explorations into methods of synthesis

of the various mycobactin fragments.⁶⁻⁸ The application of a single retrosynthetic step to a mycobactin yields the two known saponification products, mycobactic acid and cobactin **(2** and **3).** Several of the mycobactic acids and cobactins, including cobactin T, have been isolated and characterized by Snow's group^{1,2} although none have previously been synthesized. The synthesis of $2-(2$ **hydroxyphenyl)-2-oxazoline-4-carboxylic** acid was achieved, 6 but all attempts at construction of the cobactin ring system resulted in poor or no yield of hypothetical precursors to the actual target molecule.^{7,8}

Our design (Scheme I) for the synthesis of the cobactin ring system originated in part from results obtained earlier
in this laboratory concerning β -lactam syntheses.⁹ By analogy to the dehydrative cyclization of a suitably α -Nprotected 0-alkylserine hydroxamate to give a four-membered N-alkoxy lactam, an α -N-protected O-alkyl hydroxamate of ϵ -hydroxynorleucine might yield the sevenmembered N-alkoxy lactam in suitably protected form. The precursor **6** was required to test the cyclization reaction. The synthesis of **6** began with e-hydroxynorleucine **(4)** prepared by the method of Gaudry.'O The amino acid was enzymatically resolved,¹¹ and the L component was isolated in 76% yield; $[\alpha]_{D}^{25} + 22.9 \pm 1^{\circ}$ (*c* 2, 6 N HCl) $[$ lit.¹¹ $[\alpha]^{21}$ _D +22.8° *(c* 2, 5 N HCl)]. The L amino acid was stirred with 1 equiv of $Et₃N$ and 1.2 equiv of di-tert-butyl dicarbonate in THF/H₂O (1:1) at room temperature overnight to yield 96% (80% after recrystallization) of **a-N-(tert-butoxycarbony1)-L-t-hydroxynorleucine (5):** mp 112-113 °C; $[\alpha]^{23}$ _D -6.36 ± 0.8° (c 7.3, MeOH). Conversion to the 0-benzyl hydroxamate **6** was accomplished by treating an aqueous solution at pH **4.5** with a slight excess of 0-benzylhydroxylamine hydrochloride followed by 1 ethyl-3- [3- (dimethy1amino)propyll carbodiimide and maintaining the pH at **4.5** with stirring at room temperature for 0.5 h. The product was purified by acid/base extraction **to** give a colorless glass which slowly solidified: 80% yield; $[\alpha]^{23}$ _D -31.2 \pm 1.7° (c 11, MeOH).

The hydroxamate was cyclized in **THF** by using a slight excess of PPh_3 and diethyl azodicarboxylate (DEAD). The products were separated by chromatography and recrystallized from hexane. Pure **8** and a mixture of **7** and **9** were

⁽¹⁾ Snow, G. *A. Biochem. J.* **1965,97, 166. (2) White.** *A.* J.; **Snow.** *G. A. Biochem. J.* **1969,108, 785.**

⁽³⁾ Snow, G. A. *Bacteriol. Rev. 1970, 34, 99.*
(4) Ratledge, C. *Biochem. Biophys. Res. Commun. 1971, 45,* 856.

⁽⁵⁾ Ratledge, C.; Marshall, *B.* J. *Biochim. Biophys. Acta* **1972,279,58.**

⁽⁶⁾ Black, D. St. C.; Wade, M. J. *Aut. J. Chem.* **1972,25,1797.**

⁽⁷⁾ *Black,* **D. St.** *C.; Brown,* **R. F.** *C.;* **Wade,** *A.* **M.** *Aut. J. Chem.* **1972, 25, 2429.**

⁽⁸⁾ *Black,* **D. St.** *C.; Brown,* **R. F.** *C.;* **Wade,** *A.* **M.** *Aut. J. Chem.* **1972, 25, 2155.**

⁽⁹⁾ Miller, M. J.; **Mattingly, P.** *G.;* **Morrison, M.** *A.;* **Kerwin, J. F., Jr.** *J. Am. Chem. SOC.* **1980,102, 7026.**

⁽¹⁰⁾ Gaudry, R. *Can. J. Res., Sect. E* **1948,26, 387.**

⁽¹¹⁾ *Bodansky,* **M.; Martinez,** *J.;* **Priestly,** *G.* **P.; Gardner, J. D. Mutt, V.,** *J. Med. Chem.* **1978,21, 1030.**

(a) Di-tert-butyl dicarbonate, (b) **H,NOCH,Ph/carbodiimide, (c) DEAD/PPh,, (d) CF,CO,H, (e) EEDQ,** (f) **H,/Pd-C.**

obtained by chromatography on silica gel by eluting with $CH_2Cl_2/i\text{-}\text{PrOH}$ (99.5:0.5). Compounds 7 and 9 were separated by chromatography on silica gel by eluting with hexanes/ethyl acetate (80:20). The products of the cyclization reaction, **7-9,** were distinguished by the chemical shift of the multiplet for the ϵ -methylene proton in the NMR spectra. On the basis of the results of Johnson, 12 this peak should have the lowest δ value for the hydroxamate **7,** an intermediate value for the (E)-hydroximate **8,** and the highest value for the (2)-hydroximate **9.** The three products exhibited peaks centered at δ 3.5, 4.25, and **4.5,** respectively. The one with the 6 **3.5** peak was **assigned as** the desired product **7. This** assignment was confirmed by application of the FeCl₃ test for hydroxamates to the reductively debenzylated compounds. Only the product assigned **as** the hydroxamate gave a positive result. This product, **7,** was isolated in **43%** yield mp **102.5-103.5** "C; $[\alpha]^{23}$ _D $-11.3 \pm 2.4^{\circ}$ (*c* 2.2, MeOH); NMR (CDCl₃, Me₄Si) ⁶**1.6** (m, **15** H, includes t-Bu singlet at 6 **1.48), 3.5** (br t, **2** H), **4.2** (m, **1** H), **5.0** (d, **2** H), **5.8** (br m, **1** H), **7.4** (s, **5** H). The racemic compound was prepared in our initial studies; mp **115-116** "C. The cyclic hydroximates **8** and **9** were isolated in **22%** and **13%** yields and had melting points of *84.5-85.5* and **94.5-95.5** "C, respectively. The 'H NMR spectra of the three products differed mainly in the chemical shift of the ϵ -methylene protons as described above.¹³

The cyclic hydroxamate 7 was α -N deprotected with **CF3CO2H and** converted to the **free** base **10** in quantitative yield. No attempt was made to crystallize this oily amine; however, the NMR **was** consistent: **6 1.6** (br m, **6** H), **2.36**

(br s, **2** H), **3.5** (br m, **3** H) **4.96 (s, 2** H), **7.4 (8, 5** H). $D-\beta$ -Hydroxybutyric acid (11) was prepared by enzymatic reduction of lithium acetoacetate¹⁴ with β -hydroxybutyrate dehydrogenase in the presence of NAD+, (+)-galactose dehydrogenase, and (+)-galacto~e.'~ Coupling of **10** and **11** was achieved with a slight excess of l-(ethoxy**carbonyl)-2-ethoxy-l,2-dihydroquinoline** (EEDQ) in THF at **50** "C **(12-22** h). Removal of THF and recrystallization of the residue gave O-benzylcobactin T **(12)** in 80% yield from 7: mp 130.5-131.5 °C; $[\alpha]^{23}$ _D -16.3 \pm 1.2° (c 5.5, CH30H).

The final deprotection was accomplished by hydrogenation of 12 $(1 \text{ atm of } H_2/\text{Pd} - C \text{ in } CH_3OH)$. The product was recrystallized from acetone/ether to yield cobactin T **(3):** 79% **(17% overall yield from L-** ϵ **-hydroxynorleucine (4));** mp **137-138.5** °C (lit.² mp **139.5** °C); $[\alpha]^{23}$ _D -90.5 ± 4° (c 1.5, H₂O) (lit.² [α]²³_D -88.9^o).¹⁶ Extensions directed toward the total synthesis of the mycobactins are being studied.

Acknowledgment. We are grateful to the National Institutes of Health (Grant GM **25845)** and the Research Corp. for support of this research.

Peter J. Maurer, Marvin J. Miller*

Department of Chemistry University of Notre Dame Notre Dame, Indiana 46556

Received January 30, 1981

⁽¹²⁾ Johnson, J. E.; Springfield, J. R.; Hwang, J. S.; Hayes, L. J.; Cunningham, W. C.; McClaugherty, D. L. J. Org. Chem. 1971, 36, 284.
(13) Interestingly, intermolecular PPh₃/DEAD-mediated alkylations
of O-alkyl hydro However, prior conversion of the hydroxyl group to a bromide followed
by alkylation of sodium or potassium salts of the O-alkyl hydroxamates
gave mainly N-alkyl products $(4:1, N/O)$ as expected. Reaction of N-**CBZ-O-benzylhydroxylamine ((CBZ)flHOCHQPh) directly with alcohols and PPh,/DEAD gave N-alkylation exclusively. These observations**

necessitated a reevaluation of **our previously reported model intermole**cular alkylation studies.⁹ It is now clear that while $PPh_3/DEAD$ -mediated alkylation of (CBZ)NHOCH₂Ph with alcohols gives complete N-
alkylation and reaction with O-acyl hydroxamates, RCONHOCOR¹ provides typical mixt

⁽¹⁵⁾ Passingham, B. J.; Barton, R. N. *Anal. Biochem.* **1975,65,418. (16)** *All* **new crystalline compounds gave satisfactory elemental analyses (compounds 3, 5, 7-9, and 12).**